Литмир - Электронная Библиотека
Содержание  
A
A

«Бац! Я чувствовал себя так, будто я получил урной по голове, и я был очень, очень глубоко расстроен.»[34]

Но несколько людей получили эту информацию и начали работать над той же интерпретацией. Возможно, более аккуратным было бы назвать получившийся набор идей теорией резиновых лент. Но, поскольку это нуждалось в определённом статусе, это стало рождением теории струн.

Как теория сильно взаимодействующих частиц теория струн со временем была вытеснена стандартной моделью. Но это не означало, что струнные теоретики ошибались; фактически, сильно взаимодействующие частицы ведут себя часто как струны. Как обсуждалось в главе 4, силы между кварками сейчас описываются более фундаментально калибровочным полем, а основополагающий закон, кажется, даётся квантовой хромодинамикой, или КХД, которая является частью стандартной модели. Но при некоторых обстоятельствах результат может быть описан, как если бы между кварками были резиновые ленты. Это происходит потому, что сильное взаимодействие очень не похоже на электромагнитное. Тогда как электромагнитная сила становится слабее с расстоянием, сила между двумя кварками примерно постоянна по величине, когда мы растаскиваем два кварка в стороны, и затем остаётся постоянной независимо от того, как далеко мы их после этого растащили. В этом причина того, почему мы никогда не видим свободные кварки в экспериментах на ускорителях, а только частицы, сделанные из связанных кварков. Однако, когда кварки очень близки друг к другу, сила между ними ослабевает. Это важно. Струнная картина (или картина резиновых лент) работает только тогда, когда кварки находятся на существенном расстоянии друг от друга.

Первым струнным теоретикам не хватало этого существенного наблюдения. Они определённое время представляли мир, в котором кварки связаны друг с другом резиновыми лентами, — что означает, они пытались сделать теорию струн фундаментальной теорией, а не приближением чего-либо более глубокого. Когда они пытались понять струны как струны, возникали проблемы. Проблемы происходили от двух обоснованных требований, которые они постулировали в своей теории: первое, теория струн должна быть совместима с эйнштейновской СТО — то есть, она должна соответствовать относительности движения и постоянству скорости света. Второе, она должна быть совместима с квантовой теорией.

После нескольких лет работы было найдено, что теория струн как фундаментальная теория могла бы быть согласована с СТО и квантовой теорией, только если удовлетворяются некоторые условия. Первое, мир должен иметь двадцать пять пространственных измерений. Второе, должен существовать тахион — частица, которая двигается быстрее света. Третье, должны существовать частицы, которые не могут быть сведены к остальным. Мы говорим о них как о безмассовых частицах, поскольку масса есть мера энергии частицы, когда частица не движется.

Мир не кажется имеющим двадцать пять измерений пространства. Почему-то теория никак не может от них отказаться, и это одна из великих загадок науки. Что определённо, так это то, что эта уверенность в дополнительных измерениях отпугивала многих людей от серьёзного восприятия теории струн до 1984 года. Очень многое зависело от того, кто был прав — люди, которые отвергали идею дополнительных измерений перед 1984 годом, или те, кто стал уверен в их существовании после этого.

Тахионы также представляли проблему. Их никогда не видели; и даже хуже, их присутствие указывало, что теория была нестабильной и, вполне возможно, непоследовательной. Также имел место факт, что не было сильно взаимодействующих частиц без массы, так что теория потерпела неудачу как теория сильно взаимодействующих частиц.

Была и четвёртая проблема. Теория струн содержала частицы, но не все частицы природы. В ней не было фермионов — и, таким образом, не было кварков. Это была огромная проблема для сомнительной теории сильных взаимодействий!

Три из четырёх проблем удалось обойти в одно движение. В 1970 году теоретик Пьер Рамон нашёл способ видоизменить уравнения, описывающие струны, так, что они стали содержать фермионы[35]. Он нашёл, что теория будет последовательной, только если она будет иметь новую симметрию. Эта симметрия должна была смешивать старые частицы с новыми — то есть, она должна была смешивать бозоны и фермионы. Так Пьер Рамон открыл суперсимметрию; таким образом, какой бы ни была судьба теории струн, она обеспечила один из маршрутов к открытию суперсимметрии, так что, как инкубатор новых идей, она уже оказалась плодотворной.

Новая суперсимметричная теория струн также столкнулась с двумя другими проблемами. В ней не было тахионов, так что главное препятствие к том, чтобы воспринимать струны серьёзно, было устранено. И в ней не было больше двадцати пяти пространственных измерений, а только девять. Девять не три, но уже ближе. Если добавить время, новая суперсимметричная теория струн (или теория суперструн, для краткости) живёт в мире с десятью измерениями. Это на единицу меньше, чем число одиннадцать, которое, что удивительно, является максимальным числом измерений, для которых можно записать теорию супергравитации.

Примерно в то же время второй путь, как приспособить фермионы к струнам, был изобретён Андреем Невье и Джоном Шварцем. Подобно версии Рамона, их версия теории не имела тахионов и жила в мире с девятью пространственными измерениями. Невье и Шварц также нашли и смогли понять, как суперструны взаимодействуют друг с другом, и получили формулы, которые согласуются с принципами квантовой механики и СТО.

Итак, оставалась только одна загадка. Как новая суперсимметричная теория может быть теорией сильного взаимодействия, если она содержит безмассовые частицы? Но, фактически, имеются бозоны без массы. Одним из них является фотон. То же самое верно для гравитона, гипотетической частицы, связанной с гравитационными волнами. В 1972 году Невье и другой французский учёный, Джоэль Шерк, нашли, что суперструны имеют состояния колебаний, соответствующие калибровочным бозонам, включая фотон. Это был шаг в правильном направлении[36].

Но ещё больший шаг был сделан двумя годами позднее Шерком и Шварцем. Они нашли, что некоторые из безмассовых частиц, предсказываемых теорией, на самом деле должны быть гравитонами[37]. (Та же самая идея независимо пришла на ум молодому японскому физику Тамиаки Йонейе.[38])

Тот факт, что теория струн содержит калибровочные бозоны и гравитоны, поменял всё. Шерк и Шварц немедленно предположили, что теория струн вместо того, чтобы быть теорией сильных взаимодействий, была фундаментальной теорией — теорией, которая объединяет гравитацию с другими силами. Чтобы увидеть, насколько это красиво и просто, заметьте, что фотоноподобные и гравитоноподобные частицы возникают из струн. Струны могут быть как замкнутыми, так и открытыми. Замкнутая струна представляет собой петлю. Открытая струна является линией; у неё есть концы. Безмассовые частицы, которые могут быть фотонами, происходят из колебаний или открытых, или замкнутых струн. Гравитоны происходят только из колебаний замкнутых струн, или петель.

Концы открытых струн могут рассматриваться как заряженные частицы. Например, один конец мог бы быть отрицательно заряженной частицей, такой как электрон; другой тогда может быть античастицей, позитроном, который заряжен положительно. Безмассовые колебания струны между ними описывают фотон, который переносит электрическую силу между частицей и античастицей. Таким образом, вы одновременно получаете частицы и силы из открытых струн, и, если теория выстроена достаточно хитро, она может произвести все частицы и все силы стандартной модели.

Если бы имелись только открытые струны, не было бы гравитона, так что гравитация казалась бы оставшейся за кадром. Но оказывается, что вы должны включить замкнутые струны. Причина в том, что в природе происходят столкновения между частицами и античастицами. Они аннигилируют, создавая фотон. С точки зрения струн это описывается так, как будто два конца струны сближаются друг с другом и соединяются. Концы исчезают, и вы остаётесь с замкнутой петлёй.

вернуться

35

P. Ramond, «Dual theory for free fermions,» <Дуальная теория для свободных фермионов>, Phus. Rev. D, 3(10): 2415-18 (1971).

вернуться

36

Другой чрезвычайно важной статьёй была P. Goddard, J. Goldstone, C.Rebbi, and C. Thorn, «Quantum Dynamics of a Massless Relativistic String,» <Квантовая динамика безмассовой релятивистской струны>, Nucl. Phys., 56: 109-35 (1973).

вернуться

37

J. Scherk and J.H. Schwarz, «Dual Models for Non-Hadrons,» <Дуальные модели для не-адронов>, Nucl. Phys. B, 81(1): 118-44 (1974).

вернуться

38

T. Yoneya, «Connection of Dual Models to Electrodynamics and Gravidynamics,» <Связь дуальных моделей с электродинамикой и гравидинамикой>, Prog. Theor. Phys., 51(6): 1907-20 (1974).

34
{"b":"254103","o":1}