Литмир - Электронная Библиотека

Здесь, скорее всего, здесь мы имеем дело с неверной постановкой вопроса. Широкое освоение космоса, в особенности дальнего, и многочисленные программы полетов к планетам и за пределы Солнечной системы, требуют выведения на орбиту большого количества грузов, которое будет постоянно расти. Далеко не факт, что даже мощные орбитальные лифты сумеют удовлетворить спрос в выведении на орбиту грузов для околоземного космического пространства и нескольких программ в дальнем космосе. Скорее всего, выведение этих грузов будет в любом случае сопряжено с большими энергетическими затратами и будет весьма дорогостоящим делом.

Корень неверного представления заключается в том, что инерция мышления навязывает представление, что все грузы в космос должны доставляться с Земли.

Орбитальная промышленность

Между тем, существует и другой путь – создание части космической техники непосредственно в космосе, на специальных орбитальных станциях-заводах.

В самом общем виде это можно представить себе следующим образом. В космосе, на специализированных орбитальных станциях производятся некоторые материалы и комплектующие к космической технике. С Земли доставляется другая часть комплектующих. Из них в специальном орбитальном доке собирается космический аппарат.

Первые шаги к этому были сделаны после запуска орбитальной станции «Мир», на котором было проведено несколько экспериментов по выплавке металлов и полупроводниковых материалов в условиях невесомости. На станцию были доставлены экспериментальные печи «Кратер-ВМ», «Галлар», «Октидон-1» (для выплавки кремния), а также кристаллизаторы и контрольное оборудование. Эксперименты были успешными, и в частности удалось добиться выплавки металлов и полупроводниковых материалов степени чистоты, недостижимой в земных условиях. Аналогичные эксперименты проводились на спутнике «Космос-1645», который вернул изделия на Землю.

В НПО «Салют» была разработана весьма амбициозная программа развития орбитальной промышленности, которая включала в себя запуск космического аппарата «Технология», а также проект орбитального завода весом около 100 тонн для серийного производства высокочистых полупроводниковых материалов. Завод не полетел по причине неготовности ракеты-носителя. РН «Энергия», способная вывести завод на орбиту, сделала только два удачных запуска в 1987-1988 годах, после чего проект был остановлен.

Были и другие проекты космической промышленности, которые все предусматривали производство в космосе материалов для нужд земной промышленности. Они предусматривали доставку на орбитальный завод сырья и спуск на Землю продукции, тогда как при производстве использовались свойства невесомости и энергия Солнца. Большие сложности с наладкой такой производственной системы и высокая стоимость продукции не позволили этим проектам реализоваться.

С моей точки зрения, ориентация производства в космосе на земные нужды – это ошибочный путь. Огромные трудности и чрезмерно высокая себестоимость продукции станут непреодолимыми препятствиями. Если и рассматривать возможности применения материалов или изделий, сделанных в космосе, то, скорее всего, они займут весьма узкий и специализированный рынок и будут побочным результатом развития производства в космосе.

Главной целью производства в космосе могут быть только нужды космических полетов: производство частей, сборка, заправка различных космических аппаратов, кораблей и автоматических межпланетных станций. Вот в этом деле космическая промышленность может дать существенные преимущества перед производством и сборкой космической техники на Земле.

Начнем с того, что жесткие ограничения на вывод грузов на орбиту не позволяют собрать на орбите по-настоящему большой корабль. Орбитальные станции «Мир» и МКС – это ничтожные скорлупки, как по весу, так и по полезному объему. Станция «Мир» весила всего 124,3 тонны и имела внутренний объем около 100 куб.м. Однако на этой ничтожно маленькой станции космонавты пробыли 4594 дня и провели 23 тысячи экспериментов. МКС значительно больше, и после завершения строительства будет весить 470 тонн и иметь внутренний объем около 370 куб.м. Объем орбитальной станции в 1000 куб.м., по всей видимости, сейчас является недосягаемой мечтой.

Для масштабного освоения космоса потребуются куда более крупные орбитальные станции и корабли, рассчитанные на значительно более количество космонавтов и оборудования, чем нынешние орбитальные станции. К тому же расчет корабля на долгий полет (от года и более) потребует куда большего объема на одного космонавта, чтобы обеспечить оптимальные условия для отдыха.

К тому же, ограничения полезной нагрузки ракет-носителей 20-25 тоннами накладывает жесткие ограничения на архитектуру орбитальных станций, вынуждая делить их на модули, соединенные стыковочными узлами. Это, в свою очередь, снижает полезный объем станции и делает всю конструкцию менее надежной.

Конечно, на обозримую перспективу от этих факторов никуда не деться, и придется считаться как с небольшими размерами орбитальных станций, так и модульной архитектурой. Но отдаленные перспективы требуют своего, и к этим перспективам надо начинать готовиться уже сейчас.

Что можно производить в космосе?

Что можно вынести за пределы Земли из частей космического аппарата? В первую очередь, это корпус и различные металлические детали. В космонавтике наиболее активно используется высокопрочный алюминиевый сплав В95, в состав которого входит 8 элементов. Однако, выплавка на орбите металла из сырья, доставленного с Земли – это явно неудачная мысль, поскольку тогда возможности орбитальной промышленности будут жестко лимитироваться возможностями вывода грузов на орбиту. Следовательно, нужно искать сырье за пределами Земли.

Первый космический объект, на котором есть сырье для производства сплавов – это Луна. Лунный грунт весьма богат металлами, в частности, содержит в себе около 10% алюминия. Вообще, в лунном грунте содержится почти все необходимое для приготовления сплава В95, за исключением меди и цинка. Впрочем, это небольшая проблема, поскольку возможно подобрать сплавы со свойствами, подходящими для условий космоса (ведь им не требуется выдерживать нагрузки при старте с Земли), полностью подходящие к характеру лунного сырья.

Добыча сырья с Луны возможна автоматическими аппаратами. Советская АМС «Луна-16» в 1970 году успешно доказала эту принципиальную возможность, взяв образец массой 100 гр. и доставив его на Землю. Аппараты могут доставлять сырье с поверхности Луны в специальный грузовик на орбите Луны или непосредственно на орбитальный завод.

Источник энергии – это излучение Солнца, которое используется в различного вида отражательных печах, первые образцы которых были испытаны на станции «Мир», а также для получения электроэнергии для питания различных установок и оборудования.

Безусловно, что создание работоспособного орбитального производства на основе энергии Солнца и лунного сырья потребует огромной работы, многочисленных экспериментов и опытов, прежде чем будет достигнут удовлетворительный результат. Но в том, что такой результат может быть достигнут, нет никаких сомнений.

Мы взяли только один пример. Но можно быть уверенным, что при детальной разработке вопроса и по мере накопления опыта производства в космосе список материалов и изделий будет очень сильно расширен. Не исключено, что в дальней перспективе степень «локализации» производства космических аппаратов в космосе достигнет весьма большой доли.

Создание различных искусственных объектов в космосе, которым не придется совершать старт с Земли с неизбежными нагрузками, потребует весьма радикального отрешения от земных инженерных традиций, которые приспособлены к земному тяготению и давлению воздуха. Потому и расходы материалов на строительство корпусов орбитальных станций в космосе будут существенно отличаться от современных орбитальных станций. Сейчас нелегко предсказать, какие именно изменения произойдут в конструировании космической техники, если появится реальная возможность сборки космического аппарата или корабля в космосе, но что они произойдут, в этом также нет никаких сомнений.

2
{"b":"820827","o":1}