Литмир - Электронная Библиотека
Содержание  
A
A

С помощью телескопа со специальной «насадкой фиксировались видимые (то есть прошлые) и настоящие (реальные) положения звезд.

Известны три группы результатов подобных наблюдений. Одну из них составляют те, что получил в свое время сам Козырев, который утверждал, что он фиксирует истинные положения звезд, регистрируя идущий от них «поток времени». Однако, что это означает с физической точки зрения, никто понять тогда не мог. И результаты, полученные Козыревым, традиционной наукой восприняты не были.

Затем аналогичные эксперименты были проведены под руководством академика М.М. Лаврентьева в Сибирском филиале АН СССР группой И.А. Егановой и почти одновременно в Главной Астрономической обсерватории Украинской АН А.Ф. Пугачем. В наблюдениях Егановой была, хотя и не в очень явном виде, повторена концепция Козырева.

Что же касается наблюдений, проведенных Пугачем, то он положил в их основу теоретические представления о торсионных излучениях, возникающих при вращении и кручении различных тел. Поскольку торсионные волны, судя по всему, идут через физический вакуум, то они должны распространяться в пространстве практически мгновенно. И весь эксперимент Пугача изначально строился на том, что регистрировались именно торсионные излучения звезды. При этом он исходил из того, что излучение, наблюдавшееся Козыревым по целому ряду параметров, совпадало с параметрами, присущими торсионному излучению…

Наличие результатов не связанных друг с другом экспериментов, выполненных тремя независимыми организациями, может служить, хотя и не стопроцентным, но все же достаточно серьезным подтверждением тех идей, которые были положены в их основу.

К сожалению, научное сообщество отнеслось к исследованиям Козырева крайне скептически. Отчасти это объясняется тем, что пионерские работы, идущие вразрез с привычными научными представлениями, вообще с трудом пробивают себе дорогу. Но главную роль, видимо, сыграла общая ситуация, сложившаяся в нашей науке в годы сталинизма, а затем и в период застоя. Руководящими принципами в жизни научного сообщества стали примерно такие: «не высовываться», «не досаждать начальству необычными идеями», «строго придерживаться общепринятой точки зрения», «не вступать в противоречия с признанными научными авторитетами». Поэтому не случайно большинство кардинальных научных открытий в области физики и астрономии в те годы было сделано отнюдь не советскими учеными, а зарубежными. А к работам Козырева его современники, за редкими исключениями, отнеслись скорее как к чудачествам, их не восприняли всерьез, не подвергли необходимой тщательной проверке, никто по сути дела не пытался повторить его опыты.

А ведь именно такие ученые, как Козырев, – генераторы необычных, оригинальных идей и прокладывают новые пути в науке.

К великому сожалению, жизненные обстоятельства сложились против Козырева. Но новое слово сказано, попытка сделана. И не должна быть забыта. Столько уже было случаев, когда новаторские идеи, высказанные учеными в нашей стране, не находили отклика в советской науке, а затем получали блестящее развитие за рубежом. История не должна повториться. Исследования профессора Козырева ждут своих продолжателей. И только тогда можно будет обоснованно судить о том, открывают ли они новое окно в мир или являются очередным тупиковым путем. Выяснение «тупиков» тоже имеет колоссальное значение для развития науки… Оно не только позволяет экономить силы, но и направляет исследования по более перспективным направлениям.

Итак, надо потрудиться – проблема того стоит.

ЗАКЛЮЧЕНИЕ

В первой и второй частях нашей книги мы познакомили читателей главным образом с основными свойствами пространства и времени как основополагающих форм существования материи, материального мира. Заключительную же часть книги мы посвятили физическим и некоторым другим процессам, которые протекают в пространстве и времени окружающего нас мира.

Глава 1

ВЕЛИКИЕ ПРИНЦИПЫ НАУКИ

Известный физик-теоретик Е. Вигнер в одной из своих работ заметил, что в современной физике можно выделить три уровня понимания явлений природы: первый – информация о различных явлениях, второй – законы природы, определяющие связи между явлениями; и третий – так называемые симметрии, устанавливающие связи между законами.

Однако к этому следует добавить, что в физической науке существуют еще и так называемые принципы, занимающие совершенно особое место и охватывающие широкий круг разнородных явлений. Порой такие принципы вытекают из анализа реальных фактов и явлений, обобщения общепризнанных фундаментальных физических теорий, порой они формулируются на основе общечеловеческого опыта и здравого смысла. Иногда они определяют направление исследований в той или иной области, становятся идейной основой фундаментальных научных теорий, иногда носят характер «запретов». Но в любом случае они играют важнейшую роль в процессе научного познания окружающего мира, в развитии естествознания. В то же время, воспринятые как некие «абсолютные истины», они могут превращаться в своеобразные тормоза, препятствующие дальнейшему развитию науки. Опыт истории естествознания показывает, что от некоторых принципов с течением времени приходилось отказываться, другие, в свое время возникнув, продолжают существовать и по сей день.

С некоторыми из них мы подробно познакомили читателей в первых двух частях этой книги. И о них мы лишь кратко упомянем в данной главе, обратив внимание на некоторые важные аспекты, которых мы до этого не касались или почти не касались.

От детерминизма к вероятности

Как мы уже говорили, в фундаменте классической физики, основанной Галилеем и Ньютоном и их последователями, лежал объединяющий принцип «механического детерминизма». Речь идет о связи причин и следствий, о том, что одинаковые явления всегда порождают абсолютно одинаковые следствия. Из этого следовало, что зная «начальные условия», можно с точностью вычислить развитие дальнейших событий сколь угодно далеко в будущее.

Однако претензии классической механики на абсолютно точное и исчерпывающее описание всех без исключения событий и явлений на основе чисто механических закономерностей потерпели крушение. Оказалось, что природа устроена гораздо сложнее. Это особенно отчетливо проявилось при изучении явлений микромира.

В рамках классической механики, в тех случаях, когда изучается движение какого-либо тела, например, кометы или артиллерийского снаряда, выпущенного из артиллерийского орудия, мы в принципе можем с какой угодно точностью одновременно измерить скорость его движения и положение в пространстве. Но если речь идет о движении микрочастицы, то вступает в действие так называемый принцип неопределенности, впервые сформулированный выдающимся немецким физиком Вернером Гейзенбергом и пришедший на смену принципу механического детерминизма. Если мы станем одновременно измерять скорость движения интересующего нас микрообъекта и его координаты, то чем точнее мы определим скорость, тем неопределеннее окажется его положение в пространстве. И наоборот. Это означает, что в микромире законы классической механики принципиально неприменимы, и мы не в состоянии точно вычислить траекторию микрочастицы. И не потому, что не умеем это сделать, а потому, что такой траектории не существует. Получается, что одна и та же частица может в одно и то же время находиться… и «там», и «здесь». Не частица, а своеобразное облако.

Это, в частности, связано с тем, что всякое измерение изменяет состояние микрообъекта. Иными словами, человек-наблюдатель оказывается активным участником познавательного процесса. Мы можем только вычислить вероятностное поведение ансамбля микрообъектов.

99
{"b":"132954","o":1}