Литмир - Электронная Библиотека
Содержание  
A
A

Начиная с 1930 года ученые стали замечать, что при бомбардировке некоторых элементов α-частицами возникает излучение, которое нельзя обнаружить обычными методами. Если на пути такого излучения помещался парафин, из него вылетали протоны. Что-то сообщало протонам импульс. Переданный импульс был значительным, следовательно, излучение должно было состоять из очень тяжелых или очень быстрых частиц, а возможно, из тяжелых и одновременно быстрых. Английский физик Джеймс Чедвик сумел правильно истолковать полученные данные и в 1932 году заявил об открытии давно подозреваемой нейтральной частицы. Она была названа нейтроном. Нейтрон имеет массу, которая чуть-чуть больше массы протона; в настоящее время она принята равной 1,008655. У нейтрона нулевой электрический заряд и спин +1/2 или -1/2, т. е. именно те свойства, которые были необходимы, чтобы спасти закон сохранения момента количества движения.

Немецкий физик Вернер Карл Гейзенберг сразу же предположил, что ядро состоит из протонов и нейтронов, т. е. из двух разновидностей нуклонов, которые были упомянуты выше.

Поскольку массовые числа протонов и нейтронов равны примерно единице, массовое число любого ядра равно числу содержащихся в нем нуклонов. Атомный номер, представляющий собой электрический заряд ядра, равен числу протонов, так как только протоны несут электрический заряд. Ядро 2Не 4 состоит из 2 протонов и 2 нейтронов (т. е. из четырех нуклонов), 8O 16состоит из восьми протонов и восьми нейтронов (т. е. из 16 нуклонов), 90Th 232состоит из 90 протонов и 142 нейтронов (т. е. из 232 нуклонов).

Все изотопы любого элемента имеют одинаковый атомный номер, следовательно, все они должны иметь одинаковое характерное число протонов в ядрах. Массовые числа у них разные, поэтому они должны иметь разное количество нуклонов. Разница эта возникает только из-за разницы числа нейтронов. Так, ядра двух изотопов углерода, 6С 12и 6С 13содержат 6 протонов и 6 нейтронов в первом случае и 6 протонов и 7 нейтронов во втором.

Что касается урана, то ядро 92U 235состоит из 92 протонов и 143 нейтронов, т. е. всего из 235 нуклонов, ядро 92U 238— из 92 протонов и 146 нейтронов, т. е. всего из 238 нуклонов.

Распад нейтрона

Протон-нейтронная модель ядра вполне удовлетворяет физиков и по сей день считается лучшей. Тем не менее, на первый взгляд она вызывает некоторые сомнения. Если атомное ядро состоит только из протонов и нейтронов, снова возникает вопрос о том, как могут вылететь из него отрицательно заряженные электроны в виде β-частиц. А что если электронов в ядре нет и они образуются в момент распада? Применим законы сохранения в поисках правильного решения.

Образование электрона означает возникновение отрицательного электрического заряда. Но по закону сохранения электрического заряда отрицательный заряд не может образоваться, пока одновременно не возникнет положительный. Однако ни одна положительно заряженная частица не вылетает из ядра вместе с β-частицей следовательно, такая частица должна остаться внутри ядра. Известно, что внутри ядра существует одна-единственная положительно заряженная частица — протон. Из всего сказанного следует, что, когда из ядра вылетает электрон, внутри ядра образуется протон. Перейдем к закону сохранения энергии. Протон обладает массой, и если он образуется, где-то в другом месте должна исчезнуть масса. Во всех ядрах, кроме водорода-1 присутствуют нейтроны. Будучи незаряженным, нейтрон появляется или исчезает, не нарушая закон сохранения электрического заряда. Следовательно, при излучении β-частицы внутри ядра исчезает нейтрон и одновременно возникает протон (рис. 4). Другими словами, нейтрон превращается в протон, испуская при этом электрон. Нарушение закона сохранения энергии не наблюдается, так как нейтрон чуть-чуть тяжелее протона. Протон и электрон вместе имеют массу 1,008374 по шкале атомных весов, а масса нейтрона равна 1,008665. При превращении нейтрона в электрон и протон масса 0,00029 «исчезает». В действительности она превращается в кинетическую энергию вылетающей β-частицы, равную примерно 320 кэв.

Нейтрино - призрачная частица атома - _04.jpg

Рис. 4. Излучение β-частицы.

Такое объяснение кажется удовлетворительным, поэтому подведем итог, используя по возможности простую систему символов. Обозначим нейтрон n, протон p +, электрон е - и запишем уравнение излучения β-частицы:

n → р ++ е -.

Наши рассуждения только косвенно отражают то, что происходит внутри ядра. В действительности нельзя заглянуть внутрь ядра и увидеть, как протон превращается в нейтрон, когда вылетает заряженный электрон. По крайней мере, до сих пор нельзя. А можно ли наблюдать отдельные нейтроны в свободном состоянии? Будут ли они, так сказать, на наших глазах превращаться в протоны и испускать быстрые электроны?

В 1950 году физикам удалось, наконец, получить ответ. Свободные нейтроны время от времени распадаются и превращаются в протоны, причем происходит это не часто. Каждый раз, когда нейтрон претерпевает такое изменение, излучается электрон.

Нейтроны существуют в свободном состоянии до тех пор, пока не произойдет распад, и вопрос о том, как долго длится этот период, очень важен. Когда конкретно нейтрон претерпит радиоактивный распад, — сказать невозможно. Процесс этот носит случайный характер. Один нейтрон существует, не распадаясь, одну миллионную долю секунды, другой — пять недель, третий — двадцать семь миллиардов лет. Тем не менее, для большого количества частиц одного типа с достаточной степенью точности можно предсказать, когда распадется определенный процент их. (Аналогичным образом страховой статистик не может предсказать, как долго будет жить отдельный человек, но для большой группы людей определенного возраста, профессии, места жительства т. д. со значительной точностью он может предсказать, через сколько времени половина из них умрет.)

Время, в течение которого распадается половина частиц данного типа, называют обычно периодом полураспада частицы. Этот термин был введен Резерфордом в 1904 году. Каждый вид частиц имеет свой собственный характерный период полураспада. Например, период полураспада урана-238 4,5·10 9лет, тория-232 гораздо больше — 1,4·10 10лет. Поэтому уран и торий до сих пор встречаются в значительных количествах в земной коре, несмотря на то что в каждый момент некоторые из их атомов распадаются. В течение всей пятимиллиардной истории Земли распалась только половина запасов урана-238 и гораздо меньше половины запасов тория-232.

Некоторые радиоактивные ядра гораздо менее стабильны. Например, когда уран-238 излучает α-частицу, он превращается в торий-234. Период полураспада тория-234 только 24 дня, поэтому в земной коре имеются лишь следы этого элемента. Он очень медленно образуется из урана-238 и, образовавшись, очень быстро распадается.

Распадаясь, торий-234 излучает β-частицу. Внутри ядра тория нейтрон превращается в протон. Это превращение тория-234 происходит с такой скоростью, что период полураспада равен двадцати четырем дням, В других радиоактивных изотопах нейтроны гораздо медленнее превращаются в протоны. Например, калий-40 излучает β-частицы с периодом полураспада 1,3·10 9лет. Некоторые изотопы вовсе не подвержены радиоактивному распаду. Так, в ядрах атомов кислорода-16, насколько известно, ни один нейтрон сам по себе не превращается в протон, т. е. период полураспада бесконечен. Однако нас больше всего интересует период полураспада свободного нейтрона. Свободный нейтрон не окружен другими частицами, которые делали бы его более или менее стабильным, удлиняя или укорачивая его период полураспада, т. е. в случае свободного нейтрона мы имеем, так сказать, неискаженный период полураспада. Оказывается, он равен примерно двенадцати минутам, следовательно, половина из триллиона нейтронов превращается в протоны и электроны в конце каждой двенадцатой минуты.

14
{"b":"148930","o":1}