Литмир - Электронная Библиотека
Содержание  
A
A
На волне Вселенной. Шрёдингер. Квантовые парадоксы - img_97.jpg
Фундаментальная физика

Наследие Паули богато и разнообразно. Он способствовал формированию основ квантовой механики и ядерной физики. В1925 году Паули изложил свой знаменитый принцип запрета: в пределах одной квантовой системы два и более тождественных фермиона (протона, электрона, нейтрино и других частиц) не могут одновременно находиться в одном же квантовом состоянии. Принцип Паули заставляет частицы с одним квантовым состоянием сохранять расстояния между собой и объясняет наличие в структуре атома электронных оболочек, а соответственно, и многообразие химических элементов. Этот принцип объясняет, почему материя остается плотной, а не распадается на более мелкие части. В 1930 году физик предположил существование самой таинственной элементарной частицы — нейтрона (нейтрино). Через 26 лет экспериментальные физики наконец смогли открыть эту частицу, причем именно там, где предсказывал Паули.

Кризис абстракций

В 1921 году Макс Борн был назначен руководителем Института физики Гёттингена. Обладая природным дружелюбием, он всегда опекал молодых исследователей и помогал им достичь успеха. Тот факт, что трое его ассистентов получили Нобелевскую премию, не простое совпадение. Несмотря на свою скромность, Борн был одним из самых продуктивных ученых. Одна из его работ сразу стала причиной бурных научных споров и принесла своему автору известность — это была работа, в которой Борн нашел неизвестную ψ.

Как сочетается волновая функция Шрёдингера с корпускулярностью, которую Борн подтверждал опытным путем каждый день? Физики, исследуя микропространство, либо натыкались на какую-то частицу, либо не находили ничего, в том числе им не встречались и признаки плотности протяженного заряда. Как говорил Борн, «стало возможным пересчитать частицы с помощью детектора или счетчика Гейгера», и казалось маловероятным, что в момент измерения рассеянный заряд концентрируется в какой-то одной точке пространства. В действительности ответ на самый большой вопрос волнового уравнения находился не в функции ψ. Вообще говоря, решение уравнения Шрёдингера представляет собой комплексное число, то есть число вида а + bi, где r = sqrt(-1). Но это влечет новую квантовую головоломку: на практике со времен Архимеда (чтобы не заходить еще дальше вглубь веков) даже в самых сложных измерениях комплексные числа не применялись. Расстояние, время, давление или сила тока всегда характеризовались действительными числами — 7, —2/3, sqrt(5) или π. Какое-то время Шрёдингер считал, что сможет обойти этот подводный камень и использовать только действительную часть числа, как в других случаях, когда комплексные числа вводили для облегчения расчетов. Математический смысл операции заключался в том, чтобы выделить из комплексного числа часть без загадочной r. Например, действительная часть из 5 + 3i — это просто-напросто 5.

Но стратегия не принесла ожидаемых результатов, и нужно было придумать что-то другое, чтобы разрешить проблему функции ψ. Каждое мнимое число имеет симметричное, сопряженное число — зеркальное отражение относительно вещественной оси. Это воображаемое отражение записывают, изменяя знак комплексной части. Например, сопряженное число для 2 + Зi — это 2 - Зi. Если числа обозначены буквами, сопряженное число маркируется звездочкой.

Если а = 2 + Зi, тогда а* = 2-Зi.

Перемножая сопряженные числа, всегда получаем действительное число.

На волне Вселенной. Шрёдингер. Квантовые парадоксы - img_98.png

Если мнимая часть равна нулю (у = 0), произведение сводится к тому, чтобы просто вычислить квадрат числа.

Физическим смыслом была наделена не функция ψ, а произведение ψ х ψ*, которое также записывают в виде |ψ|². Как и в случае с ψ, это значение является функцией положения и времени.

Освободив электрон от корпускулярных свойств, Шрёдингер сделал эту величину частью заряженного облака, «размазанного» в пространстве. Значения |ψ|² определяли, какая порция электрического заряда находилась в каждой точке в каждый момент времени. Борн решил отказаться от использования подобных конкретных интерпретаций в пользу статистической перспективы. Он увидел в |ψ|² указание на вероятность события: когда физик в лаборатории определяет положение какой-либо частицы, вероятность найти ее в данной точке пропорциональна значению квадрата ψ.

Любопытно, что Шрёдингер в своей четвертой статье по волновой механике, которую он отправил в журнал Annalen der Physik («Анналы физики») в июне 1926 года, всего за несколько дней до Борна делает такой же вывод. Несложно догадаться, почему все же ученый отказался от этой идеи: его уравнение хорошо работало в комфортном окружении непрерывных функций и частных производных, но статистическая интерпретация добавила к ψ абстрактную сложность матричной механики, покончив с любой попыткой визуализации электронов. Когда речь идет о матрицах, вероятностях перехода или статистических функциях, случайный выбор управляет законами природы, что размывает любое изображение атома. Волновая вероятностная функция была совершенно непригодна для того, чтобы следовать за электроном, повторяя классические траектории или описывая последовательность его положений.

Игра в прятки

В примерах, рассмотренных в предыдущей главе и касающихся радиальной зависимости ψ в стационарных состояниях атома водорода, отношение между R(r) и вероятностью Р(r) найти электрон в радиусе г ядра изображено на рисунке. Максимумы функций Р(r) указывают места, где электрон находится вероятнее всего. Пик первой функции, соответствующий фундаментальному состоянию, находится на расстоянии, равном радиусу, который Бор присвоил самой маленькой кольцевой орбите своей модели. Однако, согласно Борну, существует вероятность — пусть незначительная — найти электрон даже в галактике Андромеды. Иначе говоря, частица может находиться практически в любом месте, но очень велика вероятность, что она располагается в особых местах, на которые указывает |ψ|². Это дополнение означает, что уравнение Шрёдингера совершенно точно объясняет поведение волновой функции.

На волне Вселенной. Шрёдингер. Квантовые парадоксы - img_99.jpg

Слева: Радиальная волновая функция R(r) справа: Радиальное распределение вероятностей Р(r)

В казино природы

В квантовой системе уравнение Шрёдингера рассматривает все возможные состояния и рассчитывает вероятность каждого, точно как шансы игрока в карты. Игрок знает свои шансы выиграть, но он не знает, какой будет следующая карта, выданная крупье. Вероятности продиктованы структурой и элементами системы. Играть 40 картами и восьмью или девятью, двумя джокерами или сразу двумя колодами — все это не одно и то же. Зная структуру и элементы системы, статистика позволяет проанализировать игру и разработать выигрышную стратегию. В жизни нам в этом анализе помогает некоторый уровень знаний об игре. А еще можно открыть все карты и запомнить, где находится каждая из них. Теперь, если мы опять положим карты рубашкой вверх, больше нет необходимости в статистике: мы уже знаем, какой будет следующая карта и где лежит туз. Возможно ли такое в наших знаниях о квантовом мире? Существует ли уровень реальности, на котором можно увидеть все карты природы, тот детерминистический уровень, на котором использование квантовой статистики объясняется лишь нашим частичным незнанием? Большинство физиков считают, что такого уровня не существует. А Эйнштейн был прямо-таки убежден в том, что квантовая механика характеризуется определенной неполнотой.

23
{"b":"278752","o":1}