Литмир - Электронная Библиотека
A
A

По той же причине при нарушении никелевых покрытий разрушается также железо, а менее активный никель сохраняется. В этом отношении красивые никелированные изделия-«аристократы» явно проигрывают перед обычными, совсем не блестящими оцинкованными ведрами…

Поскольку для образования гальванического микроэлемента нужен раствор электролита, то особенно интенсивно идет коррозия в соленой морской воде, ведь в ней растворено много солей. Но даже в относительно чистую дождевую воду из запыленного воздуха попадает достаточно веществ, чтобы обеспечить образование гальванической пары, а значит, и коррозии.

Процессы коррозии, с которыми мы лишь коротко познакомились, чрезвычайно сложны. Поэтому, несмотря на усилия большого числа ученых, многое в ней еще не выяснено, и существующие теоретические положения нередко являются спорными. Но наука непрерывно развивается, с каждым днем накапливаются все новые и новые данные, которые позволяют все правильнее и точнее представить себе процессы, происходящие при коррозии, и научиться управлять ими.

Каковы же средства защиты от коррозии? Прежде всего нужно стремиться к получению однородной поверхности. Полированные поверхности подвержены коррозии в минимальной степени, ведь на них мало механических неоднородностей, способствующих неравномерному окислению и образованию гальванических микроэлементов. По той же причине следует очищать изделия от пыли.

Там, где это возможно, нужно предохранять металл от попадания на него влаги. Простейший способ такой защиты — смазка железных предметов маслами, слой которых не пропускает к поверхности влагу и кислород. Часто изделия из железа красят, или лакируют, или, как мы уже говорили, лудят, цинкуют, никелируют.

Мы уже знакомы и с хромированием стали. Устойчивость хромированных изделий против коррозии объясняется тем, что хром очень быстро покрывается на воздухе тончайшим слоем плотной и однородной окиси Cr2O3, которая не пропускает к металлу влагу и кислород и потому надежно пассивирует его.

К сожалению, окислы самого железа пассивируют металл, лишь если они получены в специальных условиях. Как правило же, окислы на поверхности железа настолько рыхлы, что не препятствуют дальнейшему ржавлению.

При длительном нагревании металлических изделий в концентрированном растворе селитры со щелочью поверхность их темнеет вследствие образования защитной пленки окисла. Такой процесс пассивирования железа называют воронением. Очень прочные защитные пленки получаются при фосфатировании поверхности фосфатами железа и марганца.

Изучив электрохимические процессы, происходящие при ржавлении, люди нашли остроумные методы борьбы с коррозией. Например, если у днища судна закрепить цинковую пластину и соединить ее с корпусом, то, как мы уже знаем, цинк будет растворяться, а стальной корпус останется невредимым.

Упорные поиски ведутся для того, чтобы найти вещества, замедляющие коррозию, отрицательные катализаторы коррозии (ингибиторы). Такими веществами служат, например, хромат натрия и органические вещества формалин и уротропин. Проблема борьбы с коррозией продолжает оставаться важнейшей научной проблемой и привлекает к себе большие научные силы.

«Железный век» продолжается

Железо знакомо человеку с глубокой древности, однако лишь сравнительно недавно люди научились использовать не только «готовое» железо, попадавшее на Землю в виде метеоритов из космоса, но и выплавлять его из руды. Введение изделий из железа в трудовую практику людей вместо меди и бронзы произвело такой значительный переворот, что большой период в жизни человечества назван «железным веком».

Время, в которое мы с вами живем, часто называют веком пластмасс, иногда — веком алюминия, но уже редко говорят «век железа». А напрасно!

Судите сами. Подсчитано, что за всю историю человечества люди извлекли из недр Земли несколько миллиардов тонн железа. И большая часть этого количества поставлена на службу человеку в течение последних ста лет.

За это время люди стали использовать много новых материалов, в том числе алюминий, титан, вольфрам, ванадий, пластические массы и т. д. Но в то же время с каждым годом увеличивается и производство железа. Если в 1900 году во всем мире было получено около 42 миллионов тонн железа, то в 1940 году — уже 105 миллионов тонн. А лет через 7–8 такое количество железа будет давать одна только наша страна. Ведь уже в 1965 году семилетний план предусматривает выплавку в нашей стране до 91 миллиона тонн стали.

Программа коммунистического строительства, принятая XXII съездом Коммунистической партии, намечает довести выплавку стали в 1980 году до 250 миллионов тонн. Много ли это? Судите сами: каждую минуту промышленность будет давать около 500 тонн стали — 100 тракторов в минуту!

Конечно, царство железа сужается с введением в технику новых материалов. И это закономерно: каждый материал должен работать с максимальной пользой именно там, где это целесообразно. В воздух железо «не пустят» алюминиевые и магниевые сплавы. И в космосе, по-видимому, железо будет встречаться, как и тысячи лет назад, лишь в виде метеоритов; для создания космических кораблей железо, по-видимому, не годится по своим свойствам. Да и на Земле у железа сейчас много соперников: в ряде изделий его заменяют алюминием и пластмассами. Большие перспективы перед недавно освоенными металлами: титаном, который, в частности, гораздо меньше боится коррозии и потому «живет» более ста лет; ванадием, бериллием и другими, — о них будет речь в следующей главе.

Но при всех своих неоспоримых преимуществах все эти металлы имеют один важнейший недостаток: они дороги, и их добыча выражается в цифрах, которые трудно сравнивать с теми же цифрами для железа, — так, ванадия добывается сейчас примерно в 20 тысяч раз меньше, чем железа, и лишь в 5 раз больше, чем золота. А 90 процентов всей добычи вольфрама используется для выплавки стали на основе железа, так как иначе изделия из него были бы непомерно дороги.

В настоящее время на долю железа приходится 94 процента общего количества используемых в технике металлов. Все это позволяет утверждать, что техника еще долго будет развиваться по пути разумного сочетания новых материалов со старым и испытанным металлом — железом.

Путешествие в Страну элементов - i_083.png

И люди всей нашей планеты хотели бы лишь в одной области своей жизни уже сегодня покончить с железом и его спутниками раз и навсегда, хотели бы, чтобы все грандиозное количество железа, которое ежегодно расходуется на производство оружия, было отдано в переплавку и вернулось к людям в виде плугов и станков, тракторов и автомобилей. Советские люди делают все для того, чтобы это время наступило как можно скорее и чтобы упоминание о железе, как о главном металле войны, стало достоянием истории. Но пока такое время не наступило, пока враги мира из империалистического лагеря не хотят кончать «железный век» в отношениях между людьми, железо будет надежно стоять на страже нашего мирного труда и безопасности всех народов.

Академик Ферсман писал: «Будущее за другими металлами, а железу будет отведено почетное место старого, заслуженного, но отслужившего свое время материала. Но до этого будущего еще далеко… Железо пока — основа металлургии, машиностроения, путей сообщения, судостроения, мостов, транспорта…»

Нельзя не согласиться с этими словами. Во всяком случае, Его Величество Железо наверняка надолго переживет самого последнего короля на нашей планете.

А если бы не было железа?

Тогда произошла бы катастрофа поистине космического масштаба. «…На улицах стоял бы ужас разрушения: ни рельсов, ни вагонов, ни паровозов, ни автомобилей… не оказалось бы, даже камни мостовой превратились бы в глинистую труху, а растения начали бы чахнуть и гибнуть без живительного металла.

53
{"b":"833662","o":1}