Литмир - Электронная Библиотека
Содержание  
A
A

Однако именно Кеплеру принадлежит попытка динамического подхода к объяснению движения небесных тел, которая стала вместе с тем первым шагом к созданию действительной небесной механики. Он еще понимал силу по-аристотелевски, как величину, пропорциональную скорости (а не ускорению). Убывание скорости планеты по мере возрастания ее расстояния от Солнца ассоциируется с формулировкой закона рычага, восходящей к «Механическим проблемам»: если планета дальше от Солнца, она «тяжелее» и поэтому должна двигаться медленнее.

Позже Кеплер ассоциирует свое понятие о силе тяготения с понятием о силе магнитного притяжения, исходя из представления о Земле как о большом магните.

С другой стороны, сила, действующая на планеты, по его мнению, «обнаруживает теснейшее родство со светом».

В то же время (хотя в большинстве случаев он говорил только о притяжении планет Землей) Кеплер высказывает и некоторые соображения о тяготении тел друг к другу. Сила такого тяготения, по Кеплеру, обратно пропорциональна объемам (массам) тел, поэтому при движении друг к другу они должны до встречи пройти расстояния, обратно пропорциональные их массам. Таким образом, и в этом случае он рассматривает скорости и расстояния в линейной зависимости от величины «движущей силы», т. е. еще «по-аристотелевски».

Объяснение движения небесных тел с помощью земной механики стало окончательно возможным только после того, как Декарт сформулировал принцип инерции для прямолинейного движения, а Галилей установил принципы относительности, инерции, независимости действия сил и понятия скорости в данной точке, ускорения, сложения движений. Они, хотя и не были доведены до своего окончательного выражения, составили тот остов, на который могли опираться дальнейшие исследования. В сочетании с законами Ньютона это позволило создать единую механику, объединяющую законы криволинейного движения Кеплера и принципы динамики Галилея.

V.

НАЧАЛЬНЫЕ ЭТАПЫ КЛАССИЧЕСКОЙ МЕХАНИКИ

ВВЕДЕНИЕ

Генезис новой отрасли механики — динамики — не только совпал по времени с возникновением классической науки в целом, но и был одним из основных условий такого возникновения. Став учением о движении, механика могла претендовать на гегемонию, она начала объяснять всю совокупность явлений природы, логически развивая свои исходные принципы. Впоследствии такое сведение законов мироздания к механическим законам оказалось недостаточным, наука столкнулась с несводимостью более сложных форм движения к механическому перемещению. Но картина мира, нарисованная наукой в XVII в., уже не могла быть отброшена. Ее можно было конкретизировать, дополнять, изменять, но все эти модификации давали сходящийся ряд. Главным направлением науки стало подтверждение и уточнение старых знаний, и старые теории в пределах своей применимости приобрели историческую инвариантность: время могло их изменить, но уже не могло отбросить. Научный прогресс приобрел необратимый характер.

Такая достоверность научных представлений в рамках механической картины мира тесно связана с новым стилем научного исследования. Статика не могла слиться с экспериментальным исследованием. Динамика могла это сделать. Эксперимент исходит из начального состояния системы, подтверждает логический или математический вывод, сделанный на основе представления о механизме изменения, механизме перехода от начального состояния к последующему. Динамика говорит о том, что будет с телом при определенных начальных условиях и при определенных воздействиях. Именно в этом состоит схема эксперимента. Поэтому развитие динамики было условием развития экспериментального исследования. Последнее и придало механическому естествознанию ту необратимость развития и ту достоверность, которые отличают науку XVII в. от научных представлений предыдущего периода.

Основная серия открытий, создавших динамику, охватывает весь XVII в. В первые десятилетия этого столетия в трудах Галилея был сформулирован закон падения тел; Галилей же исследовал законы движения падающих тел и законы качания маятника. В 80-е годы того же столетия появились «Математические начала натуральной философии» Ньютона, в которых проблемы динамики уже получили разностороннюю и глубокую математическую (правда, не аналитическую) разработку. Труд Ньютона был началом нового развития механики на подлинно математической основе, ее совершенствования средствами нового математического аппарата. Основными вехами этого нового периода явились труды Эйлера, прежде всего его двухтомная «Механика» (1736), и «Аналитическая механика» Лагранжа (1788).

Проблема подлинной математизации понятий движения и силы впервые во всей своей широте возникла в XVII в. Правильнее будет сказать, что движение стало в центре внимания не только механиков, но и математиков. «Поворотным пунктом в математике была декартова переменная величина. Благодаря этому в математику вошли движение и диалектика, и благодаря этому же стало немедленно необходимым дифференциальное и интегральное исчисление, которое тотчас и возникает и которое было в общем и целом завершено, а не изобретено Ньютоном и Лейбницем»{84}.

В своих «Началах» Ньютон несколько раз настойчиво заявлял, что он рассуждает как математик. Это заявление справедливо в особенности применительно к книге I, где Ньютон пытался формулировать проблемы с наибольшей общностью, лишь намечая те возможные конкретные истолкования, которые они получили в двух последующих книгах «Начал». Однако было бы совершенно неверно всецело доверяться в этом отношении внешней структуре «Начал». Если присмотреться к хронологической последовательности открытий Ньютона, нетрудно убедиться, что наблюдение, эксперимент, обобщенный теоретический вывод находились в сложном непрерывном взаимодействии. За абстрактными определениями, законами и теоремами «Начал» стоят собственно физические концепции, связанные с экспериментальными данными. Они в свою очередь обнаруживают зависимость от механико-математических обобщений. Эта сложная, нелинейная зависимость отнюдь не сводится, как можно было бы думать при чтении «Начал», к простой экспериментальной проверке теоретически выведенных положений, к простой сверке теоретических выводов с данными наблюдений.

Сказанное приложимо ко всей исторической обстановке XVII в. в целом. И здесь налицо сложнейшее взаимодействие между работой теоретической мысли, прогрессом экспериментальной техники, новыми наблюдениями, которые подчас неожиданно врывались в мир ученой мысли, вынуждали менять традиционные представления. В этой связи можно было бы напомнить о том, как первый повод к пересмотру старых представлений о боязни пустоты дало Галилею сообщение флорентийских мастеров о предельной высоте подъема воды при выкачивании ее насосами и как позднее, к 40-м годам XVII в., анализ тех же вопросов был поставлен Торричелли на почву строго продуманного эксперимента.

Для XVII в. характерно последовательное нарастание роли и значения эмпирических истоков механики. Столь же характерно, как и нарастание мощи логического и математического исследования. История начальных этапов классической механики показывает всю условность противопоставления рационалистического и эмпирического постижения истины. Эмпирическое исследование в XVII в. стало экспериментом в более точном смысле, чем раньше: речь шла об освобождении явлений от случайных осложняющих воздействий, о выявлении их механизма, причем механизма в буквальном смысле. С другой стороны, рационалистическое постижение мира оперировало понятиями, допускавшими измерение, наблюдения, количественный эксперимент.

В конечном счете это было связано с характером производства в XVII в. В это время горное дело включало гораздо более разнообразные, чем раньше, конструкции для откачки воды из шахт и подъема руды, в металлургических районах появились большие предприятия с механическими двигателями воздуходувок, с двигателями для дробления руды и обработки металла. Условия установки водяных колес стали настолько разнообразными, что ремесленная эмпирическая традиция стала недостаточной и понадобились теоретические соображения об их оптимальной конструкции. Баллистика и мореплавание также расширяли эмпирическую базу динамики.

28
{"b":"240100","o":1}